在冷却过程中,塑料在微观结构上会发生明显的变化:对于无定形材料,其改变表现为焊接区分子链的取向;对于半结晶的材料,结晶程度和晶粒大小的形成与冷却速度有关。当冷却温度超出规定的温度范围时,形成的晶体结构可能会在承受应力时发生破坏,而不合适的温度和过快的冷却速度则会导致结晶度降低,同时形成的晶粒比较小,而这种较小的晶粒结构非常容易在遭受化学物质和溶剂侵蚀以及承受应力的情况下发生破坏。因此,应尽量避免使用过快的冷却速度。
同时,焊接过程中支撑焊件的材料也会影响冷却速度。在焊接时,应避免使用混凝土、厚的金属板或其他容易从焊接区域吸收热量的材料作为支撑件,否则,即使提高热风的温度,也不能很好地解决问题。
背面自保护不锈钢TGF系列焊丝是一种带有特殊涂层的焊丝。焊接时,其保护药皮会渗透到熔池背面,形成一层致密的保护层,使焊道背面不被氧化,冷却后这层 渣壳会自动脱落,用压缩空气或水冲的方式容易qc。这种焊丝的使用方法与普通弧焊实芯焊丝基本相同,涂层不会影响正面的电弧和熔池形态,焊缝金属在性能 上可满足要求。常用的自保护焊丝。
国内外油气管线常用的焊接工艺概述
70、80年代管线的焊接主要以下向纤维素焊条手工焊和半自动CO2焊为主,由于这些方法为手工操作,因此效率低,且焊接质量也受到了人工技能水平的制约,80年代中期,由于电力电子技术和计算机技术的不断发展,焊接设备的控制技术进入智能化时代,因此为管道焊接自动化新设备、新工艺的成功实施创造了条件,使管道的焊接效率和焊接质量有了很大提高,如林肯公司开发的STT(The Surface Tension1 Transfer)CO2气保焊电源技术和设备,以其柔和的电弧,极小的飞溅和极1佳的打底焊质量引起了世人的关注,成为管道焊接,特别是打底焊首1选的方法之一。又如MAGNATECH公司生产的管道全位置自动焊接设备,应用了自适应控制技术,不仅克服了人工操作的水平制约,而且大大提高了焊接效率和质量。