晶体中每个原子皆在平衡位置附近振动 (即所谓热振
动),温度升高时振动能量增加,振动频率和振幅加大。
以双原子为模型 (图12),假设左边的原子在坐标原点被
固定,而右边的原子是自由的。当温度升高时,右边自由
振动原子的振幅增大,此时,若该原子以R0 为原点作简谐振动,则其平衡位置仍是R0,这
样就不会发生膨胀。但势能曲线向右是水平渐近线,向左是垂直渐近线,是极不对称的。

这种现象称为 “结构起伏”。在一定的温度下,虽然存在 “能量起伏”和
“结构起伏”现象,但对于特定液态金属,其处于有序状态的原子集团具有一定的统计平均
尺寸;并且其平均尺寸大小随温度的升高而减小。
③ 液态结构及离子间相互作用的理论描述 在液态结构定量计算上,也提出了许多理
图16 液态结构及粒子间相互作用
论模型及方程 (图16)。通过建立偶分布函数
g(r)与偶势u(r)(即 “原子对”间的相互作用
势能与原子空间距离r的函数关系)的方程,或
在已知偶势u(r)的条件下,计算出某一液体的
偶分布函数g(r)。

④ 实际液态金属的结构 以上描述的是理想纯金属的液态结构,其中只存在游动原子
团和原子集团间的空穴,液态中的原子存在着很大 “能量起伏”,游动的原子集团时聚时
,此起彼伏而存在 “结构起伏”。实际液体金属的结构要比纯金属复杂得多。
实际上,纯金属是不存在的。实际金属中,即使非常纯的实际金属中总存在着大量杂质
子。例如,纯度为99999999%的纯铁,即杂质量为10-8,每摩尔体积 (71cm3)中总
原子数为6023×1023,则每1cm3 铁液中所含杂质原子数约相当于1015个数量级。
